skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butaev, Almaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given a compact doubling metric measure spaceXthat supports a 2-Poincaré inequality, we construct a Dirichlet form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) that is comparable to the upper gradient energy form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) . Our approach is based on the approximation ofXby a family of graphs that is doubling and supports a 2-Poincaré inequality (see [20]). We construct a bilinear form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) using the Dirichlet form on the graph. We show that the$$\Gamma $$ Γ -limit$$\mathcal {E}$$ E of this family of bilinear forms (by taking a subsequence) exists and that$$\mathcal {E}$$ E is a Dirichlet form onX. Properties of$$\mathcal {E}$$ E are established. Moreover, we prove that$$\mathcal {E}$$ E has the property of matching boundary values on a domain$$\Omega \subseteq X$$ Ω X . This construction makes it possible to approximate harmonic functions (with respect to the Dirichlet form$$\mathcal {E}$$ E ) on a domain inXwith a prescribed Lipschitz boundary data via a numerical scheme dictated by the approximating Dirichlet forms, which are discrete objects. 
    more » « less